

USDOT Remote Sensing Initiative NCRST-Infrastructure University of California, Santa Barbara (lead), University of Wisconsin, University of Florida, Iowa State University Sponsored by – USDOT – RSPA NASA Joint endeavor with Iowa DOT

The Problem/Opportunity

- DOT use of spatial data
 - Planning
 - Infrastructure Management
 - Traffic engineering
 - Safety, many others
- Inventory of large systems costly
 - e.g., 110,000 miles of road in Iowa

The Problem/Opportunity

- Current Inventory Collection Methods
 - Labor intensive
 - Time consuming
 - Disruptive
 - Dangerous

The Problem/Opportunity

- Collect transportation inventories through remote sensing
- Improve existing procedures
- Exploit new technologies
- Extract data which was previously difficult and costly to obtain

Remote Sensing

- "the science of deriving information about an object from measurements made at a distance from the object without making actual contact" Campbell, J. Introduction to Remote Sensing, Second Edition.
- Three types
 - − 1) space based or satellite
 - -2) airplane based or aerial
 - 3) in-situ or video/magnetic

Research Objective

- Can remote sensing be used to collect infrastructure inventory elements?
- What accuracy is possible/necessary?

Research Approach

- Identify common inventory features
- Identify existing data collection methods
- Use aerial photos to extract inventory features
- Performance measures
- Define resolution requirements
- Recommendations

Identify Common Inventory Features

- HPMS requirements
- Additional elements (Iowa DOT)
- Number of signals at intersections
- Number of stop signs at intersections
- Type of area road passes through (residential, commercial, etc)
- Number of business entrances
- Number of private entrances
- Railroad crossings
- Intersection through width

Required HPMS Features

- Section Length
- Number of Through Lanes
- Surface/Pavement Type
- Lane Width
- Access Control
- Median Type
- Median Width
- Peak Parking

- Shoulder Type
- Shoulder Width
 - Right and Left
- Number of Right/Left Turn Lanes
- Number of Signalized Intersections
- Number of Stop Intersections
- Number of Other Intersections

Inventory Features Collected • Thru Lane Characteristics Access Features - Number, width - Number, business, private • Turning Lane Pavement type Characteristics •Signal Structure/Type Presence, type, number, - Mast, post, strung width, length •Intersection Location • Shoulder Characteristics - Commercial, residential, - Presence, width etc. Parking Pavement Markings type - Crosswalks, stop bars, pedestrian islands Medians

Data Collection Methods • Field data collection - GPS - Traditional surveying - Manual • Video-log van

Datasets • 2-inch dataset - Georeferenced • 6-inch dataset - Orthorectified • 2-foot dataset - Orthorectified • 1-meter dataset - Orthorectified

* not collected concurrently

Feature Identification

- Number of features identified in aerial photos versus ground truth
- e.g. only 44% of the time can correctly identify the number of through lanes (2' resolution)
- All shoulder edges can be identified with 6-inch resolution photos

Feature Identification					
	Simulated 1m Satellite	2-Foot	6-inch	2-inch	
Number of Through Lanes	42%	44%	100%	100%	
Through Lane Width	<25%	<25%	100%	100%	
Shoulder Presence/Type	N/A	30%	100%	100%	
Shoulder Width	N/A	0%	100%	100%	
Parking Presence/Type	83%	95%	100%	100%	
Median Presence/Type	56%	57%	100%	100%	
Median Width	56%	57%	100%	100%	
Private Access	100%	100%	100%	100%	
Comm/Ind Access	100%	100%	100%	100%	
Pavement Type	0%	0%	85%	100%	
Intersection Design	100%	100%	100%	100%	
Land Use	100%	100%	100%	100%	

Feature Identification						
	Simulated 1m Satellite	2-Foot	6-inch	2-inch		
Crosswalks	0%	0%	100%	100%		
Pedestrian Islands	<25%	<25%	100%	100%		
Stop Bars	0%	<25%	100%	100%		
Signal Structure/Type	0%	0%	90%	100%		
Right Turn Lane Presence	71%	58%	100%	100%		
Right Turn Lane Length	57%	58%	100%	100%		
Right Turn Lane Width	57%	50%	100%	100%		
Left Turn Lane Presence	63%	47%	100%	100%		
Left Turn Lane Length	50%	47%	100%	100%		
Left Turn Lane Width	50%	37%	100%	100%		
Total Roadway Width	100%	100%	100%	100%		

Accuracy of Linear Measurements

- Comparison of extracted measurements to ground truth
 - e.g. 37/67 measurements of individual through lane width were within 6 inches of the true measurement using 2-inch resolution photos
- Recommended accuracies
 - Lane lengths within ± 1 meter (± 3.28 feet)
 - Lane widths within \pm .1 meter (\pm .328 feet)
 - Shoulder widths within ± 0.1 meter ($\pm .328$ feet)
 - Median widths within ± 0.1 meter ($\pm .328$ feet)

Problems/Difficulties

- Different data sources
 - Taken on different days
 - Saved in different formats (.tif, .sid)
 - All sets are panchromatic, no color
- Potential photo errors
 - Atmospheric distortions
 - Camera displacements at time of exposure

Problems/Difficulties

- Vegetation can block the view of features
- Impossible to begin and end measurements on images at the same points as were used in the field
- Pavement markings heavily relied upon for length and width measurements, but these are not repainted in the exact location

Conclusions

- 1-meter and 2-foot images allow identification of
 - Intersection design (4-way, T, etc.)
 - Presence of on-street parking
 - Driveway location/land use
- 2-foot images also allow some identification of:
 - Number of thru lanes/lane width
 - Median presence
 - Turning lane presence/type/length/width

Conclusions

- 6-inch images allow more detailed data to be identified and extracted
 - Lane widths and lengths (through and turn lanes)
 - Shoulder presence/width
 - Signal structures
- 2-inch images allowed all elements to be identified and measured

Recommendations

- 1-meter and 2-foot images
 - Applicable for limited intersection inventories
 - Intersection Design/Alignment
 - Land Use
 - Parking identification
- 6-inch and 2-inch images
 - Applicable for detailed inventories
 - Widths, lengths
 - Feature types and number (pavement, signal)